Web application architectures and components
Web Application Architecture Components
Let me explain each major component layer:
Client Interface Layer
- Load Balancer: Distributes incoming traffic
- Reverse Proxy: Handles request forwarding and caching
- SSL/TLS Termination: Manages secure connections
Request Processing Layer
- Request Handler: Initial request processing
- Router: URL/endpoint mapping
- Middleware Chain: Request/response pipeline
- Security Filters: Input validation, XSS prevention
- Authentication: User verification
- Session Manager: User session handling
Application Core
- Controllers: Request/response coordination
- Service Layer: Business operations orchestration
- Business Logic: Core application rules
- Validation: Input/data validation
Data Access Layer
- Data Access Objects: Database interaction
- ORM/Data Mapper: Object-relational mapping
- Connection Pool: Database connection management
- Cache Manager: Data caching
Common Services (Cross-cutting Concerns)
- Logging Service: Application logging
- Monitoring: Performance/health tracking
- Configuration: App settings management
- Error Handler: Exception management
Key Component Interactions:
- All requests flow through the Client Interface Layer for initial processing
- Request Processing Layer handles common concerns before reaching business logic
- Application Core contains the main business logic and workflows
- Data Access Layer provides consistent data storage interface
- Common Services are accessed by all layers for cross-cutting concerns
graph TD
subgraph "Client Interface Layer"
LB[Load Balancer]
RP[Reverse Proxy]
SSL[SSL/TLS Termination]
end
subgraph "Request Processing Layer"
RH[Request Handler]
RT[Router]
MC[Middleware Chain]
SEC[Security Filters]
AUTH[Authentication]
SESS[Session Manager]
end
subgraph "Application Core"
CONT[Controllers]
SVC[Service Layer]
BL[Business Logic]
VAL[Validation]
end
subgraph "Data Access Layer"
DAO[Data Access Objects]
ORM[ORM/Data Mapper]
CONN[Connection Pool]
CACHE[Cache Manager]
end
subgraph "Common Services"
LOG[Logging Service]
MON[Monitoring]
CONF[Configuration]
ERR[Error Handler]
end
%% Connections
LB --> RP
RP --> SSL
SSL --> RH
RH --> RT
RT --> MC
MC --> SEC
MC --> AUTH
MC --> SESS
MC --> CONT
CONT --> SVC
SVC --> BL
BL --> VAL
BL --> DAO
DAO --> ORM
ORM --> CONN
DAO --> CACHE
%% Cross-cutting concerns
CONT -.-> LOG
CONT -.-> MON
CONT -.-> CONF
CONT -.-> ERR
SVC -.-> LOG
DAO -.-> LOG
MC -.-> LOG
Document Store Database Architecture
Let me explain the key components and their roles:
Client Interface Layer
Driver Interface: Handles client connections and requests Query Parser: Converts queries into internal format Connection Pool: Manages database connections
Query Processing
Query Engine: Core query execution Query Optimizer: Query plan optimization Aggregation Pipeline: Handles data aggregation operations Index Catalog: Manages available indexes
Persistence Layer
Memory Components:
Document Cache: In-memory document storage Index Memory: In-memory index storage Connection Library: Connection management
Storage Engine:
Journal Log: Write-ahead logging Data Store: Document storage on disk Index Store: Index storage on disk
Cluster Management
Replication Set: Manages data replication Sharding Manager: Handles data distribution Cluster Monitor: Health monitoring Balancer Controller: Data balance across shards
System Services
- Authentication Service: User authentication
- Authorization: Access control
- Monitoring: System metrics
- Logger: System logging
Key Interactions:
Client requests flow through the Driver Interface to Query Processing Query Engine coordinates with Storage Engine for data access Cluster Management ensures data distribution and availability System Services provide cross-cutting functionality
Common Design Patterns:
Write operations go through Journal Log before persistence Read operations check Document Cache before disk access Queries are optimized using Index Catalog All operations are authenticated and authorized Monitoring and logging track system health and performance
graph TD
subgraph "Client Interface Layer"
DRI[Driver Interface]
QP[Query Parser]
CP[Connection Pool]
end
subgraph "Query Processing"
QE[Query Engine]
QO[Query Optimizer]
AP[Aggregation Pipeline]
IC[Index Catalog]
end
subgraph "Storage Engine"
direction TB
subgraph "Memory Components"
CACHE[Document Cache]
IM[Index Memory]
CL[Connection Library]
end
subgraph "Persistence Layer"
JL[Journal Log]
DS[Data Store]
IX[Index Store]
end
end
subgraph "Cluster Management"
RS[Replication Set]
SH[Sharding Manager]
CM[Cluster Monitor]
BC[Balancer Controller]
end
subgraph "System Services"
AS[Authentication Service]
AU[Authorization]
MON[Monitoring]
LOG[Logger]
end
%% Connections
DRI --> QP
DRI --> CP
QP --> QE
QE --> QO
QO --> AP
QO --> IC
QE --> CACHE
QE --> IM
CACHE --> DS
IM --> IX
DS --> JL
IX --> JL
%% Cluster connections
QE --> RS
QE --> SH
SH --> BC
RS --> CM
%% Service connections
DRI --> AS
DRI --> AU
QE -.-> MON
QE -.-> LOG
Infrastructure Tools Entity Relationship Diagram
Let me break down the main tool categories and their relationships:
Container Orchestration & Management
- Kubernetes: Container orchestration platform
- Helm: Package manager for Kubernetes
- etcd: Distributed key-value store for Kubernetes
Infrastructure as Code & Provisioning
- Terraform: Infrastructure provisioning
- Cloud Providers (AWS/GCP/Azure): Resource targets
- Ansible: Configuration management
- Inventory: Target hosts/environments
Monitoring & Observability
- Prometheus: Metrics collection
- Grafana: Visualization platform
- AlertManager: Alert handling
- ELK Stack:
- Elasticsearch: Log storage
- Logstash: Log processing
- Kibana: Log visualization
CI/CD & Artifact Management
- Jenkins: Automation server
- GitHub: Source code management
- SonarQube: Code quality
- Artifactory: Artifact repository
Security & Secret Management
- Vault: Secret management
- Certificates: SSL/TLS management
- Secrets: Credentials, keys, tokens
Key Relationships:
- Kubernetes is monitored by Prometheus
- Terraform provisions cloud resources
- Jenkins pulls from GitHub and stores in Artifactory
- ELK stack components work together for log management
-
Vault provides secrets to multiple tools ```mermaid erDiagram KUBERNETES ||–o{ PROMETHEUS : “monitored_by” KUBERNETES ||–|{ HELM : “managed_by” KUBERNETES }|–|| ETCD : “stores_state_in”
TERRAFORM –o{ AWS : “provisions” TERRAFORM –o{ GCP : “provisions” TERRAFORM –o{ AZURE : “provisions” TERRAFORM – VAULT : “fetches_secrets_from” PROMETHEUS – { GRAFANA : “visualized_by” PROMETHEUS – ALERTMANAGER : “alerts_through” JENKINS – { GITHUB : “pulls_from” JENKINS – SONARQUBE : “scans_with” JENKINS } – ARTIFACTORY : “stores_artifacts_in” ANSIBLE – { INVENTORY : “manages” ANSIBLE – VAULT : “fetches_secrets_from” ELK – { LOGSTASH : “ingests_through” ELK – { ELASTICSEARCH : “stores_in” ELK – { KIBANA : “visualized_by” VAULT – { SECRETS : “stores” VAULT – { CERTIFICATES : “manages” MONITORING { string metrics string alerts string dashboards string logs }
DEPLOYMENT { string containers string configurations string versions string environments }
SECURITY { string secrets string certificates string policies string access_controls }
AUTOMATION { string pipelines string playbooks string templates string scripts }
```