Financial Calculations for Fun and Profit
Financial calculations are essential in personal finance, business, and investment decisions. Here are some common financial calculations:
1. Interest Calculations
a. Simple Interest
\(\text{Simple Interest (SI)} = P \times r \times t\)
- $(P): Principal amount$
- $(r): Annual interest rate (decimal)$
- $(t): Time in years$
// 1. Simple Interest
public static double calculateSimpleInterest(double principal,
double rate, double time) {
return principal * rate * time;
}
b. Compound Interest
\(\text{Compound Interest (CI)} = P \times (1 + \frac{r}{n})^{n \times t} - P\)
- (P): Principal amount
- (r): Annual interest rate (decimal)
- (n): Number of compounding periods per year
- (t): Time in years
// 2. Compound Interest
public static double calculateCompoundInterest(double principal,
double rate,
int compoundsPerYear,
double time) {
return principal * Math.pow(1 + (rate / compoundsPerYear),
compoundsPerYear * time) - principal;
}
2. Loan and Mortgage Payments
a. Monthly Loan Payment (Amortization)
\(M = \frac{P \times r \times (1 + r)^n}{(1 + r)^n - 1}\)
- (M): Monthly payment
- (P): Loan principal
- (r): Monthly interest rate ($(r = \frac{\text{Annual Rate}}{12})$)
- (n): Total number of payments ($(n = \text{Years} \times 12$))
// 3. Monthly Loan Payment (Amortization)
public static double calculateMonthlyLoanPayment(double principal,
double annualRate,
int years) {
double monthlyRate = annualRate / 12;
int totalPayments = years * 12;
return (principal * monthlyRate * Math.pow(1 + monthlyRate, totalPayments)) /
(Math.pow(1 + monthlyRate, totalPayments) - 1);
}
b. Total Interest Paid
\(\text{Total Interest} = (M \times n) - P\)
// 4. Total Interest Paid
public static double calculateTotalInterest(double monthlyPayment,
int years, double principal) {
int totalPayments = years * 12;
return (monthlyPayment * totalPayments) - principal;
}
3. Investment Growth
a. Future Value of Investment
\(FV = P \times (1 + r)^t\)
- (FV): Future value
- (P): Initial investment
- (r): Annual rate of return
- (t): Number of years ```java // 5. Future Value of Investment public static double calculateFutureValue(double principal, double rate, double time) { return principal * Math.pow(1 + rate, time); }
#### b. **Present Value**
$$
PV = \frac{FV}{(1 + r)^t}
$$
- Used to determine the value of future cash flows in today's terms.
```java
// 6. Present Value
public static double calculatePresentValue(double futureValue,
double rate, double time) {
return futureValue / Math.pow(1 + rate, time);
}
4. Budgeting and Savings
a. Savings Required for a Goal
\(\text{Savings per period} = \frac{\text{Goal Amount}}{n}\)
- Divide the goal amount by the number of periods until the deadline.
// 7. Savings Required for a Goal public static double calculateSavingsPerPeriod(double goalAmount, int periods) { return goalAmount / periods; }
5. Retirement Planning
a. Withdrawal Amount (4% Rule)
\(\text{Annual Withdrawal} = 0.04 \times \text{Portfolio Value}\)
public static double calculateAnnualWithdrawal(double portfolioValue) {
return 0.04 * portfolioValue;
}
b. Future Value of Retirement Contributions
\(FV = \text{Contribution} \times \frac{(1 + r)^t - 1}{r}\)
public static double calculateFutureValueOfContributions(double contribution,
double rate,
double time) {
return contribution * ((Math.pow(1 + rate, time) - 1) / rate);
}
6. Business Metrics
a. Profit Margin
\(\text{Profit Margin} = \frac{\text{Net Income}}{\text{Revenue}} \times 100\)
public static double calculateProfitMargin(double netIncome, double revenue) {
return (netIncome / revenue) * 100;
}
b. Break-Even Point
\(\text{Break-Even Sales} = \frac{\text{Fixed Costs}}{\text{Selling Price per Unit} - \text{Variable Cost per Unit}}\)
public static double calculateBreakEvenSales(double fixedCosts,
double sellingPrice,
double variableCost) {
return fixedCosts / (sellingPrice - variableCost);
}
7. Ratios
a. Debt-to-Income Ratio
\(\text{DTI} = \frac{\text{Total Monthly Debt Payments}}{\text{Gross Monthly Income}} \times 100\)
public static double calculateDebtToIncomeRatio(double totalDebtPayments,
double grossIncome) {
return (totalDebtPayments / grossIncome) * 100;
}
b. Liquidity Ratio
\(\text{Liquidity Ratio} = \frac{\text{Liquid Assets}}{\text{Current Liabilities}}\)
public static double calculateLiquidityRatio(double liquidAssets,
double currentLiabilities) {
return liquidAssets / currentLiabilities;
}
8. Stock and Investment Analysis
a. Return on Investment (ROI)
\(\text{ROI} = \frac{\text{Gain from Investment} - \text{Cost of Investment}}{\text{Cost of Investment}} \times 100\)
public static double calculateROI(double gain, double cost) {
return ((gain - cost) / cost) * 100;
}
b. Price-to-Earnings Ratio (P/E)
\(\text{P/E Ratio} = \frac{\text{Market Price per Share}}{\text{Earnings per Share}}\)
public static double calculatePERatio(double marketPrice,
double earningsPerShare) {
return marketPrice / earningsPerShare;
}
Combination of financial calculations
public class FinancialCalculations {
// 1. Simple Interest
public static double calculateSimpleInterest(double principal, double rate, double time) {
return principal * rate * time;
}
// 2. Compound Interest
public static double calculateCompoundInterest(double principal, double rate, int compoundsPerYear, double time) {
return principal * Math.pow(1 + (rate / compoundsPerYear), compoundsPerYear * time) - principal;
}
// 3. Monthly Loan Payment (Amortization)
public static double calculateMonthlyLoanPayment(double principal, double annualRate, int years) {
double monthlyRate = annualRate / 12;
int totalPayments = years * 12;
return (principal * monthlyRate * Math.pow(1 + monthlyRate, totalPayments)) /
(Math.pow(1 + monthlyRate, totalPayments) - 1);
}
// 4. Total Interest Paid
public static double calculateTotalInterest(double monthlyPayment, int years, double principal) {
int totalPayments = years * 12;
return (monthlyPayment * totalPayments) - principal;
}
// 5. Future Value of Investment
public static double calculateFutureValue(double principal, double rate, double time) {
return principal * Math.pow(1 + rate, time);
}
// 6. Present Value
public static double calculatePresentValue(double futureValue, double rate, double time) {
return futureValue / Math.pow(1 + rate, time);
}
// 7. Savings Required for a Goal
public static double calculateSavingsPerPeriod(double goalAmount, int periods) {
return goalAmount / periods;
}
// Main method to demonstrate the calculations
public static void main(String[] args) {
// Example usage
double principal = 10000;
double annualRate = 0.05; // 5% interest rate
double time = 5; // 5 years
int compoundsPerYear = 12;
// Simple Interest
System.out.println("Simple Interest: " + calculateSimpleInterest(principal, annualRate, time));
// Compound Interest
System.out.println("Compound Interest: " + calculateCompoundInterest(principal, annualRate, compoundsPerYear, time));
// Monthly Loan Payment
int loanYears = 10;
double monthlyPayment = calculateMonthlyLoanPayment(principal, annualRate, loanYears);
System.out.println("Monthly Loan Payment: " + monthlyPayment);
// Total Interest Paid
System.out.println("Total Interest Paid: " + calculateTotalInterest(monthlyPayment, loanYears, principal));
// Future Value
System.out.println("Future Value: " + calculateFutureValue(principal, annualRate, time));
// Present Value
double futureValue = 20000;
System.out.println("Present Value: " + calculatePresentValue(futureValue, annualRate, time));
// Savings Required for a Goal
double goalAmount = 50000;
int periods = 10;
System.out.println("Savings Per Period: " + calculateSavingsPerPeriod(goalAmount, periods));
}
}